Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Stability and Hopf Bifurcation for Gause-Type Predator-Prey System

A class of three-dimensional Gause-type predator-prey model is considered. Firstly, local stability of equilibrium indicating the extinction of top-predator is obtained. Meanwhile, we construct a Lyapunov function, which is an extension of the Lyapunov functions constructed by Hsu for predator-prey system 2005 , to give the global stability of the equilibrium. Secondly, we analyze the stability...

متن کامل

Stability and Hopf Bifurcation Analysis for a Gause-Type Predator-Prey System with Multiple Delays

and Applied Analysis 3 Letting λ = iω 1 (ω 1 > 0) be a root of (11), then we have m 1 ω 1 sin τ 1 ω 1 = p 2 ω 2 1 − n 0 , m 1 ω 1 cos τ 1 ω 1 = ω 3 1 − n 1 ω 1 . (12)

متن کامل

Hopf Bifurcation Analysis on General Gause-Type Predator-Prey Models with Delay

and Applied Analysis 3 a stable equilibrium to be unstable and induce bifurcations as well as periodic oscillations. Under the hypothesis that prey x t has a gestation in 1.1 , we modify it to be the following one: dx t dt xg x − yp x − τ , dy t dt y −h ep x ] − zqy, dz t dt z −s mqy, 1.3 where τ is the time of gestation. The purpose of current work is to analyze the effect of delay on the dyna...

متن کامل

Crossing the hopf bifurcation in a live predator-prey system.

Population biologists have long been interested in the oscillations in population size displayed by many organisms in the field and laboratory. A wide range of deterministic mathematical models predict that these fluctuations can be generated internally by nonlinear interactions among species and, if correct, would provide important insights for understanding and predicting the dynamics of inte...

متن کامل

Stability and Hopf Bifurcation in a Symmetric Lotka-volterra Predator-prey System with Delays

This article concerns a symmetrical Lotka-Volterra predator-prey system with delays. By analyzing the associated characteristic equation of the original system at the positive equilibrium and choosing the delay as the bifurcation parameter, the local stability and Hopf bifurcation of the system are investigated. Using the normal form theory, we also establish the direction and stability of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in the Applied Sciences

سال: 2017

ISSN: 0170-4214

DOI: 10.1002/mma.4569